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Abstract

The central focus of this paper is on the following problem:
Consider three unscaled pots, with volumes a, b and c ≥ a + b liters, where a, b, c ∈ N∗.

Initially the third pot is filled with water and the other ones are empty. Characterize all quantities
that can be measured using these pots.

In the first part of the paper we solve this problem by using the motion of a billiard ball on a
special parallelogram shaped table. In the second part we generalize the initial problem for n+1
pots (n ∈ N, n ≥ 2) and we give an algorithmic solution to this problem. This solution is also
based on the properties of the orbit of a billiard ball. In the last part we present our observations
and conclusions based on a problem solving activity related to this problem.

The initial problem for 3 pots is mentioned in [2] (The three jug problem on page 89), but the
solution is not detailed and the general case (with several pots) is not mentioned. The visualization
we use is a key element in developing the proof of our results, so the proof can be viewed as a
good example of visual thinking used in arithmetic (see [3], [1]).

1 Introduction
The following problem was solved by Siméon Denis Poisson using graphs in the 18th century ([7]):

A man has 12 pt1 wine and he wants to give to a neighbor 6 pints but he has only a 5 pt and an 8
pt empty pot. How can he measure 6 pt to the 8 pt pot?

Poisson’s idea was to represent the possible states of the pots as vertices of a graph while every
possible filling corresponds to an oriented edge in this graph. To obtain a better visualization of
the filling procedure we omitted some edges in this graph in order to obtain a tree structure. The
initial state (12, 0, 0) is identified with the root of the tree and on each level appear only the possible
states that were not included in the previous levels. For the first filling we have two possibilities,
so we obtain two possible states: (4, 8, 0) and (7, 0, 5). From these states we can obtain the states
(0, 8, 4), (4, 3, 5), (0, 7, 5), (7, 5, 0) and so on.

11 pt (pint) is equivalent to 568.26125 ml
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Figure 1: Poisson’s representation

Figure 1 illustrates a few vertices and edges of this graph. However this representation (the gen-
eration of this graph level by level) also leads to an algorithmic solution we need a different approach
in order to solve some more general problems:

a) Consider three unscaled pots, with volumes a, b and c ≥ a+b liters, where a, b, c ∈ N∗. Initially
the third pot is filled with water and the other ones are empty. Characterize all the quantities
which can be measured with these pots.

b) Consider n+ 1 unscaled pots, with volumes a1, a2, . . . , an and an+1 liters, where ai ∈ N∗, 1 ≤
i ≤ n + 1 and an+1 ≥

n∑
i=1

ai. Initially the largest pot is filled with water and the other ones are

empty. Characterize all the quantities which can be measured with these pots.

Regarding a) in [2] the author states that ”Clearly, such a problem (with c = a+ b) can be solved
whenever the integers a and b are coprime”, but there is no proof of this assertion. Hence our first aim
is to give a detailed answer to a) and then to extend our argument to the general case formulated in
b). After we clarify the mathematical background, we present a problem solving activity which was
designed in order to investigate the solving mechanisms/algorithms used by our students in handling
such problems. More precisely we point out that most of our students use a ”trial-error” type random
algorithm (they are simply filling randomly chosen pots and they only care about avoiding previous
states). Moreover we designed also a computer simulation which solves the problem by the same
random algorithm (in each step it randomly chooses two pots such that by filling from the first to
the second none of the previous states appears) and we observed that in all cases the solution can be
obtained in this way. This fact implies that similar problems do not really measure the combinative
skills of our students but their persistence, patience and vigilance.

2 A model, an algorithmic approach and some further mathe-
matical background

Consider an a× b parallelogram in the lattice generated by a parallelogram with sides of length 1 and
having an angle of 60◦. This is our billiard table and we shall study the motion of a billiard ball which
starts from the vertex O(0, 0) and moves along the edge OA (where A(a, 0)).

As described in [2] the motion of the billiard ball on this special table gives a possible filling
sequence using the pots a, b, c. For a better understanding label the diagonals as in figure 2 and to
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Figure 2: The billiard table

each lattice point P assign the coordinates of the lattice point and the number of the diagonal pass-
ing through P. The assigned numbers correspond to the quantity of water in the pots. The starting
point corresponds to the state (0, 0, c), the point A to the state (a, 0, c − a) and so on. Due to the
construction of the table the ball moves along the grid lines and the diagonals and each collision point
on the boundary corresponds to an achievable state of the three pots. For a better understanding we
considered a = 4, b = 7 and c = 11 and we described the orbit of the billiard ball on figure 3. In
this case in every pot it can be measured every non negative integer quantity that does not exceed the
maximum capacity of the pots. Geometrically this fact means that the orbit of the ball passes through
every lattice point on the boundary. In the next section we prove the following

Theorem 1 If c = a + b and d = gcd(a, b) the orbit of the billiard ball (on the corresponding table)
passes through a lattice point (x, y) on the boundary if and only if d|x and d|y (gcd(a, b) denotes the
greatest common divisor of a and b)

Remark 2 If d = 1, the orbit passes through all the lattice points on the boundary.

Remark 3 If d = gcd(a, b), every quantity which can be measured (without throwing water away)
must be divisible by d, hence the above theorem gives an answer to problem a).

From an algorithmic point of view either we use the billiard table to generate the sequence of
states or we can formulate the following very simple strategy:

• if possible fill from a to b;

• if b is full, fill from b to c;
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Figure 3: The orbit of a ball and the states of the pots

• if none of the previous steps is possible then fill from c to a;

This algorithm generates the same sequence of states as the motion of the ball launched from the
origin in the direction of point A.

Remark 4 Suppose a < b and d = gcd(a, b). If we can measure d liters in the second pot (with b
liters) by filling from the first pot (with a liters) to the second one x times and by emptying the second
pot y times, than ax − by = d, so our filling algorithm gives an algorithmic solution of the linear
diophantine equation ax−by = d. Unfortunately the converse is not obvious. If we have the solutions
of the equation ax − by = 1, we still need an algorithm to obtain the desired quantities in our pots.
Hence the measuring problem is not equivalent with the diophantine equation.

If we have more pots the problem seems to be more complicated, but in fact we can use the
same visualization because in a filling step only 2 pots are involved, so if the vectors (x1, x2, . . . ,
. . . xn, xn+1) and (x′

1, x
′
2, . . . , x

′
n, x

′
n+1) describe the state of pots before a filling operation, respec-

tively after this operation, then a filling operation changes exactly two of the vector’s components.
This implies that even if we use a multidimensional visual representation (an n dimensional par-
allelogram), the transformations will be represented on some 2 dimensional faces, so we can also
operate these transformations in the plane. If a1, a2, . . . , an, an+1 represent the volumes of the pots
and dj = gcd(a1, a2, . . . , aj), j ≥ 2 then we have

d3 =gcd(a1, a2, a3) = gcd(gcd(a1, a2), a3) = gcd(d2, a3)

d4 =gcd(a1, a2, a3, a4) = gcd(gcd(a1, a2, a3), a4) = gcd(d3, a4)

and generally
dj+1 = gcd(dj, aj+1), j ≥ 2.

Consider the parallelograms with side lengths (a1, a2), (a2, a3), (a3, a4), . . . , (an−1, an) and (an, a1)
all having an angle of 60◦ as shown in figure 4. For each 1 ≤ j ≤ n to the motion of a ball on the jth

301



The Electronic Journal of Mathematics and Technology, Volume 4, Number 3, ISSN 1933-2823

table corresponds a filling sequence with the pots aj, aj+1 and an+1 while the pots a1, a2, . . . , aj−1

are considered filled with water and aj+2, . . . an are empty. We consider the motion of a billiard ball
on the first table with side lengths a1 and a2 and we mark each collision point on the common side
of the first two tables. From each such point we consider the motion of a billiard ball on the second
table and we mark each collision point on the common side of the second and third tables and so on.
For 1 ≤ j ≤ n− 1 denote by Sj the common side of the jth and (j + 1)th tables. The length of Sj is
aj+1. We are interested in characterizing all marked points on the segments S1, S2, S3, . . . , Sn−1. In
order to obtain this characterization we rephrase our Theorem 1 as follows:

Theorem 5 If d′ is a divisor of b and we consider all the orbits (of a billiard ball on the table with
side lengths a and b) starting from the points (0, kd′), where k ∈ N and kd′ ≤ b, then these orbits will
contain the lattice point (x, y) from the boundary if and only if d|x and d|y where d = (d′, a).

This theorem guaranties that on every segment Sj we mark exactly the points whose coordinates are
multiples of dj+1, hence on the segment Sn−1 (with length an) we mark all points whose coordinates
are multiples of d = gcd(a1, a2, . . . , an). Due to the symmetry this can be extended to all segments,
which means that in each pot we can measure a quantity x if and only if d|x and x does not exceed
the capacity of the pots.
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Figure 4: The unfolded faces

Due to the previous argumentation we have the following theorems:

Theorem 6 Consider three unscaled pots, with volumes a, b and c = a+ b liters, where a, b, c ∈ N∗.
Initially the third pot is filled with water and the other two pots are empty.

• If c = a+b and (a, b) = d, then in the pot with volume a we can measure 0, 1·d, 2·d, . . . , a−d, a
liters, in the pot with volume b we can measure 0, 1 · d, 2 · d, . . . , b − d, b liters and in the pot
with volume c we can measure 0, 1 · d, 2 · d, . . . , c− d, c liters.
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• If c > a+b and (a, b) = d, then in the pot with volume a we can measure 0, 1·d, 2·d, . . . , a−d, a
liters, in the pot with volume b we can measure 0, 1 · d, 2 · d, . . . , b − d, b liters and in the pot
with volume c we can measure c− a− b, c− a− b+ 1 · d, c− a− b+ 2 · d, . . . , c− d, c liters.

Theorem 7 Consider n+1 unscaled pots with volumes a1, a2, . . . , an and an+1, where a1, a2, . . . , an,
an+1 ∈ N∗ and denote by d the greatest common divisor of a1, a2, . . . , an. Initially the last pot is

filled with water. If an+1 ≥
n∑

j=1

aj, then for each j ∈ {1, 2, . . . n} in the pot with volume aj we

can measure 0, 1 · d, 2 · d, . . . , aj − d, aj liters and in the pot with volume an+1 we can measure

c, c+ d, c+ 2d, . . . , an+1 − d, an+1 liters, where c = an+1 −
n∑

j=1

aj.

Remark 8 We created a Matlab Graphical User Interface which illustrates the motion of the billiard
ball and the corresponding states of the pots for n ≤ 5. This can be downloaded from

http://www.math.ubbcluj.ro/˜andrasz/filling/animation/animation.html

3 Proofs
In this section we prove the asserted theorems using the billiard ball’s motion and some basic number
theoretic properties.
Proof of theorem 1. The key observation in our proof is a relation between the coordinates of the
successive upper and the lower impact points. If we have an impact point on the upper boundary
segment with coordinates (a − x, 0) and the next impact point on the lower boundary segment has
coordinates (a− y, b), then y is the remainder obtained dividing x+ b by a (see figure 5). Due to this
observation the coordinates of the impact points on the lower boundary segment are the remainders
obtained dividing b, 2b, 3b, . . . , (a1 − 1)b, a1b by a, where a = a1d and d = (a, b). But these remain-
ders are exactly the numbers 0, d, 2d, . . . , (a1 − 1)d because all of them are divisible by d and they
are pairwise distinct. This completes the proof.
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Figure 5: Relation between upper and lower impact point
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Proof of theorem 5. Using the same observation as in the previous proof the coordinates of the
collision points on the lower boundary segment are the remainders of (a− kd′) + lb modulo a where
k, l ∈ N∗. But the above remainders are exactly the multiples of gcd(d′, a).
Proof of theorem 6. The assertions of theorem 3 are a direct consequence of theorem 1 and the
representation of states on the billiard table.

Remark 9 If c < a+ b, there are cases when not all the quantities can be measured. If a = 7, b = 11
and c = 13, we can prove (using a Poisson type representation of all possible states) that we can’t
measure 1 liter.

Proof of theorem 7. From theorem 5 and the detailed construction (see figure 4) we deduce that
in the pot a1 we can measure every quantity which is a multiple of d and does not exceed a1. If we
repeat the whole filling procedure starting from these states we can obtain all the states in each pot.
When using the table with side lengths aj and aj+1 (and the corresponding pots) we consider that all
the pots ak with 1 ≤ k ≤ j − 1 are filled with water and the pots aj+2, . . . , an are empty while an+1

contains the rest of the water. This guaranties that in the an+1 pot appears every possible state.

4 Problem solving experience
We worked with 120 students, randomly chosen from 3 different Romanian cities. Our students were
10 − 14 years old and we divided them into 2 groups: the first group containing 60 students of age
category 10−12 and the second one 60 students of the age category 13−14. The students were asked
to solve the following exercises:

1. We have three unscaled pots with 7l, 17l, 24l volumes. Initially the largest pot is filled with
water.

a) Measure out 1l of water in one of the pots.

b) Measure out 1l of water in the largest pot.

c) Characterize all quantities that can be measured out in the pots.

2. We have three unscaled pots with 21l, 34l, 55l volumes. Initially the largest pot is filled with
water. Measure out 1l of water in one of the pots.

Our problem solving activity was designed in order to see how our students are approaching such
problems. The students had to specify not only the outcome of their solution, but also their thoughts,
attempts and failures, as well. We have to mention that we did not solve similar exercises with the
students before this activity.

The puzzling nature of the problems ensures that the students could not see the solution all at
once. We expected the students to make random steps (fillings) and to realize that they must avoid the
previous states. We were hoping that the students will be able to perform a sufficiently large number
of steps before giving up. We suspected that there will be significant differences between the results
of the two groups.

In the first group there were only a few correct solutions to exercises 1/a,b, and no solution to
exercises 1/c and 2. In the second group there were significantly more solutions to exercises 1/a,b, a
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few almost correct solutions to exercise 1/c and no solution to exercise 2. We were surprised because
60% of the first group and 45% of the second group did not understand the exercises at all. Some of
the students wanted to scale the pots, others simply wanted to pour half of the water from the pot c to
b and some of them wanted to pour out 1 liter measuring only with eyes. We were surprised because
this kind of mathematical problems appear in many textbooks and competitions for 10 − 12 years
old children. From the first group most of the students who understood the mathematical problem
were not able to perform out the necessary steps. They gave it up after the 6th − 9th correct steps
and after this they started implying false ideas, similar to their colleagues who did not understand the
mathematical problem. Probably their working memory became full and they were unable to erase it
(this idea seemed to be confirmed by some comments the students made: ”my brain has been blocked”
or ”you must measure it until you get tired”). The same phenomenon appeared in the second group as
well, however the number of correct steps made toward the result was significantly higher, and about
23% of the students succeeded in solving 1/a,b.

None of these students realized that their choices (pouring from pot x to pot y) were random and
they didn’t try simultaneous alternative ways. Although there were no explanation on the selection of
the steps, the comments of some of the students showed that they simply tried to avoid the previous
states and at every state they chose the next step randomly (”we just have to fill the pot till the desired
quantity appears”).

The comparison between the histograms of the number of correct steps the students performed
revealed a significant difference between the results of the two groups. The students from the second
group were able to carry out much more steps than the students from the first group.

We also observed an interesting correlation: if we consider only those students from the first
group who solved exercise 1/a and we look for a regression between the number of steps used in
the first problem and the number of performed steps at problem 2, then we get two well correlated
data sequences. This correlation showed that the students performed 20% less steps with the larger
pots than with the smaller ones before giving up. Some of the students believed (they described it
in their comments) that exercise 2 can not be solved because the pots are too large. This shows that
the operational skills of our 13 − 14 students regarding addition and substraction are not yet really
operational.

5 Concluding remarks
• The use of diagrams in solving routine or non-routine mathematical problems has been widely

studied in the literature (see [5] and the references therein). The representation used by Poisson
is a typical hierarchy (branching) structure (see [6]) while the billiard ball representation can
be viewed as a dynamical diagram. In our case the key element of the proof is contained in
the dynamical structure and it is not present in the hierarchy structure. We believe that such
dynamical diagrams can be used with a greater efficiency in teaching/learning activities than
the usual static diagrams. It would be interesting to develop a deeper study on the effectiveness
of using dynamical representations in problem solving.

• We also wish to point out that the construction of a dynamical diagram eases the understanding
of the problem. Although the original problem is a non-routine one (in our case), once the
corresponding diagram has been understood, the problem becomes a routine problem.
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• Our problem solving activity illustrates that in many classroom activities the miracle just hap-
pens, and the solution appears without further or deeper understanding of the phenomenons,
moreover our students are familiar with this sudden appearance of a solution. The students
are perfectly satisfied if they obtain a solution and they seldom search the reasons behind it.
This can be a major obstacle in understanding mathematics and in developing an active and
conscious attitude in doing mathematics.

• Our students did not balance their possible choices and what is even worst most of them did not
realize that they did have the choice of the next state and that they can experiment the effect of
these choices.

• Our computer simulations show that the solution of both problems can be obtained by random
steps if we avoid the previous states (and even if we do not avoid cycles, but the number of steps
in this case is much more greater), so the failure of our students can not be explained neither
by the defective knowledge nor by the absence of their talent or combinatorial skills. They did
not have sufficient perseverance to perform as much steps as it was needed. We hope that by
understanding the nature of this problem and the source of their failure our students realized
what Jim Watson says about persistence: ”A river cuts through rock, not because of its power,
but because of its persistence.”
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