Measuring with unscaled pots - algorithm versus chance

Szilárd András and Örs Nagy
e-mail: andraszk @yahoo.com
Department of Applied Mathematics
Babeş-Bolyai University
RO-400084
Romania

Abstract

The central focus of this paper is on the following problem: Consider three unscaled pots, with volumes a, b and $c \geq a+b$ liters, where $a, b, c \in \mathbb{N}^{*}$. Initially the third pot is filled with water and the other ones are empty. Characterize all quantities that can be measured using these pots.

In the first part of the paper we solve this problem by using the motion of a billiard ball on a special parallelogram shaped table. In the second part we generalize the initial problem for $n+1$ pots $(n \in \mathbb{N}, n \geq 2)$ and we give an algorithmic solution to this problem. This solution is also based on the properties of the orbit of a billiard ball. In the last part we present our observations and conclusions based on a problem solving activity related to this problem.

The initial problem for 3 pots is mentioned in [\downarrow] (The three jug problem on page 89), but the solution is not detailed and the general case (with several pots) is not mentioned. The visualization we use is a key element in developing the proof of our results, so the proof can be viewed as a good example of visual thinking used in arithmetic (see [B], [D]).

1 Introduction

The following problem was solved by Siméon Denis Poisson using graphs in the $18^{\text {th }}$ century ([[]]):
A man has $12 \mathrm{pt}^{\mathrm{m}}$ wine and he wants to give to a neighbor 6 pints but he has only a 5 pt and an 8 pt empty pot. How can he measure 6 pt to the 8 pt pot?

Poisson's idea was to represent the possible states of the pots as vertices of a graph while every possible filling corresponds to an oriented edge in this graph. To obtain a better visualization of the filling procedure we omitted some edges in this graph in order to obtain a tree structure. The initial state $(12,0,0)$ is identified with the root of the tree and on each level appear only the possible states that were not included in the previous levels. For the first filling we have two possibilities, so we obtain two possible states: $(4,8,0)$ and $(7,0,5)$. From these states we can obtain the states $(0,8,4),(4,3,5),(0,7,5),(7,5,0)$ and so on.

[^0]

Figure 1: Poisson's representation

Figure \mathbb{D} illustrates a few vertices and edges of this graph. However this representation (the generation of this graph level by level) also leads to an algorithmic solution we need a different approach in order to solve some more general problems:
a) Consider three unscaled pots, with volumes a, b and $c \geq a+b$ liters, where $a, b, c \in \mathbb{N}^{*}$. Initially the third pot is filled with water and the other ones are empty. Characterize all the quantities which can be measured with these pots.
b) Consider $n+1$ unscaled pots, with volumes $a_{1}, a_{2}, \ldots, a_{n}$ and a_{n+1} liters, where $a_{i} \in \mathbb{N}^{*}, 1 \leq$ $i \leq n+1$ and $a_{n+1} \geq \sum_{i=1}^{n} a_{i}$. Initially the largest pot is filled with water and the other ones are empty. Characterize all the quantities which can be measured with these pots.

Regarding a) in [l] the author states that "Clearly, such a problem (with $c=a+b$) can be solved whenever the integers a and b are coprime", but there is no proof of this assertion. Hence our first aim is to give a detailed answer to a) and then to extend our argument to the general case formulated in b). After we clarify the mathematical background, we present a problem solving activity which was designed in order to investigate the solving mechanisms/algorithms used by our students in handling such problems. More precisely we point out that most of our students use a "trial-error" type random algorithm (they are simply filling randomly chosen pots and they only care about avoiding previous states). Moreover we designed also a computer simulation which solves the problem by the same random algorithm (in each step it randomly chooses two pots such that by filling from the first to the second none of the previous states appears) and we observed that in all cases the solution can be obtained in this way. This fact implies that similar problems do not really measure the combinative skills of our students but their persistence, patience and vigilance.

2 A model, an algorithmic approach and some further mathematical background

Consider an $a \times b$ parallelogram in the lattice generated by a parallelogram with sides of length 1 and having an angle of 60°. This is our billiard table and we shall study the motion of a billiard ball which starts from the vertex $O(0,0)$ and moves along the edge $O A$ (where $A(a, 0)$).

As described in [[]] the motion of the billiard ball on this special table gives a possible filling sequence using the pots a, b, c. For a better understanding label the diagonals as in figure \square and to

Figure 2: The billiard table
each lattice point P assign the coordinates of the lattice point and the number of the diagonal passing through P. The assigned numbers correspond to the quantity of water in the pots. The starting point corresponds to the state $(0,0, c)$, the point A to the state $(a, 0, c-a)$ and so on. Due to the construction of the table the ball moves along the grid lines and the diagonals and each collision point on the boundary corresponds to an achievable state of the three pots. For a better understanding we considered $a=4, b=7$ and $c=11$ and we described the orbit of the billiard ball on figure B. In this case in every pot it can be measured every non negative integer quantity that does not exceed the maximum capacity of the pots. Geometrically this fact means that the orbit of the ball passes through every lattice point on the boundary. In the next section we prove the following

Theorem 1 If $c=a+b$ and $d=g c d(a, b)$ the orbit of the billiard ball (on the corresponding table) passes through a lattice point (x, y) on the boundary if and only if $d \mid x$ and $d \mid y(g c d(a, b)$ denotes the greatest common divisor of a and b)

Remark 2 If $d=1$, the orbit passes through all the lattice points on the boundary.

Remark 3 If $d=\operatorname{gcd}(a, b)$, every quantity which can be measured (without throwing water away) must be divisible by d, hence the above theorem gives an answer to problem a).

From an algorithmic point of view either we use the billiard table to generate the sequence of states or we can formulate the following very simple strategy:

- if possible fill from a to b;
- if b is full, fill from b to c;

Figure 3: The orbit of a ball and the states of the pots

- if none of the previous steps is possible then fill from c to a;

This algorithm generates the same sequence of states as the motion of the ball launched from the origin in the direction of point A.

Remark 4 Suppose $a<b$ and $d=g c d(a, b)$. If we can measure d liters in the second pot (with b liters) by filling from the first pot (with a liters) to the second one x times and by emptying the second pot y times, than $a x-b y=d$, so our filling algorithm gives an algorithmic solution of the linear diophantine equation $a x-b y=d$. Unfortunately the converse is not obvious. If we have the solutions of the equation $a x-b y=1$, we still need an algorithm to obtain the desired quantities in our pots. Hence the measuring problem is not equivalent with the diophantine equation.

If we have more pots the problem seems to be more complicated, but in fact we can use the same visualization because in a filling step only 2 pots are involved, so if the vectors (x_{1}, x_{2}, \ldots, $\left.\ldots x_{n}, x_{n+1}\right)$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}, x_{n+1}^{\prime}\right)$ describe the state of pots before a filling operation, respectively after this operation, then a filling operation changes exactly two of the vector's components. This implies that even if we use a multidimensional visual representation (an n dimensional parallelogram), the transformations will be represented on some 2 dimensional faces, so we can also operate these transformations in the plane. If $a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}$ represent the volumes of the pots and $d_{j}=\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{j}\right), j \geq 2$ then we have

$$
\begin{aligned}
& d_{3}=\operatorname{gcd}\left(a_{1}, a_{2}, a_{3}\right)=\operatorname{gcd}\left(\operatorname{gcd}\left(a_{1}, a_{2}\right), a_{3}\right)=\operatorname{gcd}\left(d_{2}, a_{3}\right) \\
& d_{4}=\operatorname{gcd}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\operatorname{gcd}\left(\operatorname{gcd}\left(a_{1}, a_{2}, a_{3}\right), a_{4}\right)=\operatorname{gcd}\left(d_{3}, a_{4}\right)
\end{aligned}
$$

and generally

$$
d_{j+1}=\operatorname{gcd}\left(d_{j}, a_{j+1}\right), \quad j \geq 2 .
$$

Consider the parallelograms with side lengths $\left(a_{1}, a_{2}\right),\left(a_{2}, a_{3}\right),\left(a_{3}, a_{4}\right), \ldots,\left(a_{n-1}, a_{n}\right)$ and $\left(a_{n}, a_{1}\right)$ all having an angle of 60° as shown in figure 田. For each $1 \leq j \leq n$ to the motion of a ball on the $j^{\text {th }}$
table corresponds a filling sequence with the pots a_{j}, a_{j+1} and a_{n+1} while the pots $a_{1}, a_{2}, \ldots, a_{j-1}$ are considered filled with water and $a_{j+2}, \ldots a_{n}$ are empty. We consider the motion of a billiard ball on the first table with side lengths a_{1} and a_{2} and we mark each collision point on the common side of the first two tables. From each such point we consider the motion of a billiard ball on the second table and we mark each collision point on the common side of the second and third tables and so on. For $1 \leq j \leq n-1$ denote by S_{j} the common side of the $j^{\text {th }}$ and $(j+1)^{t h}$ tables. The length of S_{j} is a_{j+1}. We are interested in characterizing all marked points on the segments $S_{1}, S_{2}, S_{3}, \ldots, S_{n-1}$. In order to obtain this characterization we rephrase our Theorem la as follows:

Theorem 5 If d^{\prime} is a divisor of b and we consider all the orbits (of a billiard ball on the table with side lengths a and b) starting from the points $\left(0, k d^{\prime}\right)$, where $k \in \mathbb{N}$ and $k d^{\prime} \leq b$, then these orbits will contain the lattice point (x, y) from the boundary if and only if $d \mid x$ and $d \mid y$ where $d=\left(d^{\prime}, a\right)$.

This theorem guaranties that on every segment S_{j} we mark exactly the points whose coordinates are multiples of d_{j+1}, hence on the segment S_{n-1} (with length a_{n}) we mark all points whose coordinates are multiples of $d=\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Due to the symmetry this can be extended to all segments, which means that in each pot we can measure a quantity x if and only if $d \mid x$ and x does not exceed the capacity of the pots.

Figure 4: The unfolded faces
Due to the previous argumentation we have the following theorems:
Theorem 6 Consider three unscaled pots, with volumes a, b and $c=a+b$ liters, where $a, b, c \in \mathbb{N}^{*}$. Initially the third pot is filled with water and the other two pots are empty.

- If $c=a+b$ and $(a, b)=d$, then in the pot with volume a we can measure $0,1 \cdot d, 2 \cdot d, \ldots, a-d, a$ liters, in the pot with volume b we can measure $0,1 \cdot d, 2 \cdot d, \ldots, b-d, b$ liters and in the pot with volume c we can measure $0,1 \cdot d, 2 \cdot d, \ldots, c-d, c$ liters.
- If $c>a+b$ and $(a, b)=d$, then in the pot with volume a we can measure $0,1 \cdot d, 2 \cdot d, \ldots, a-d, a$ liters, in the pot with volume b we can measure $0,1 \cdot d, 2 \cdot d, \ldots, b-d, b$ liters and in the pot with volume c we can measure $c-a-b, c-a-b+1 \cdot d, c-a-b+2 \cdot d, \ldots, c-d$, c liters.

Theorem 7 Consider $n+1$ unscaled pots with volumes $a_{1}, a_{2}, \ldots, a_{n}$ and a_{n+1}, where $a_{1}, a_{2}, \ldots, a_{n}$, $a_{n+1} \in \mathbb{N}^{*}$ and denote by d the greatest common divisor of $a_{1}, a_{2}, \ldots, a_{n}$. Initially the last pot is filled with water. If $a_{n+1} \geq \sum_{j=1}^{n} a_{j}$, then for each $j \in\{1,2, \ldots n\}$ in the pot with volume a_{j} we can measure $0,1 \cdot d, 2 \cdot d, \ldots, a_{j}-d, a_{j}$ liters and in the pot with volume a_{n+1} we can measure $c, c+d, c+2 d, \ldots, a_{n+1}-d, a_{n+1}$ liters, where $c=a_{n+1}-\sum_{j=1}^{n} a_{j}$.

Remark 8 We created a Matlab Graphical User Interface which illustrates the motion of the billiard ball and the corresponding states of the pots for $n \leq 5$. This can be downloaded from http://www.math.ubbcluj.ro/~andrasz/filling/animation/animation.html

3 Proofs

In this section we prove the asserted theorems using the billiard ball's motion and some basic number theoretic properties.
Proof of theorem 四. The key observation in our proof is a relation between the coordinates of the successive upper and the lower impact points. If we have an impact point on the upper boundary segment with coordinates $(a-x, 0)$ and the next impact point on the lower boundary segment has coordinates $(a-y, b)$, then y is the remainder obtained dividing $x+b$ by a (see figure \rrbracket). Due to this observation the coordinates of the impact points on the lower boundary segment are the remainders obtained dividing $b, 2 b, 3 b, \ldots,\left(a_{1}-1\right) b, a_{1} b$ by a, where $a=a_{1} d$ and $d=(a, b)$. But these remainders are exactly the numbers $0, d, 2 d, \ldots,\left(a_{1}-1\right) d$ because all of them are divisible by d and they are pairwise distinct. This completes the proof.

Figure 5: Relation between upper and lower impact point

Proof of theorem 5. Using the same observation as in the previous proof the coordinates of the collision points on the lower boundary segment are the remainders of $\left(a-k d^{\prime}\right)+l b$ modulo a where $k, l \in \mathbb{N}^{*}$. But the above remainders are exactly the multiples of $\operatorname{gcd}\left(d^{\prime}, a\right)$.
Proof of theorem 6. The assertions of theorem 3 are a direct consequence of theorem 1 and the representation of states on the billiard table.

Remark 9 If $c<a+b$, there are cases when not all the quantities can be measured. If $a=7, b=11$ and $c=13$, we can prove (using a Poisson type representation of all possible states) that we can't measure 1 liter.

Proof of theorem [7. From theorem $\mathbb{\square}$ and the detailed construction (see figure (7) we deduce that in the pot a_{1} we can measure every quantity which is a multiple of d and does not exceed a_{1}. If we repeat the whole filling procedure starting from these states we can obtain all the states in each pot. When using the table with side lengths a_{j} and a_{j+1} (and the corresponding pots) we consider that all the pots a_{k} with $1 \leq k \leq j-1$ are filled with water and the pots a_{j+2}, \ldots, a_{n} are empty while a_{n+1} contains the rest of the water. This guaranties that in the a_{n+1} pot appears every possible state.

4 Problem solving experience

We worked with 120 students, randomly chosen from 3 different Romanian cities. Our students were $10-14$ years old and we divided them into 2 groups: the first group containing 60 students of age category $10-12$ and the second one 60 students of the age category $13-14$. The students were asked to solve the following exercises:

1. We have three unscaled pots with $7 l, 17 l, 24 l$ volumes. Initially the largest pot is filled with water.
a) Measure out $1 l$ of water in one of the pots.
b) Measure out $1 l$ of water in the largest pot.
c) Characterize all quantities that can be measured out in the pots.
2. We have three unscaled pots with $21 l, 34 l, 55 l$ volumes. Initially the largest pot is filled with water. Measure out $1 l$ of water in one of the pots.

Our problem solving activity was designed in order to see how our students are approaching such problems. The students had to specify not only the outcome of their solution, but also their thoughts, attempts and failures, as well. We have to mention that we did not solve similar exercises with the students before this activity.

The puzzling nature of the problems ensures that the students could not see the solution all at once. We expected the students to make random steps (fillings) and to realize that they must avoid the previous states. We were hoping that the students will be able to perform a sufficiently large number of steps before giving up. We suspected that there will be significant differences between the results of the two groups.

In the first group there were only a few correct solutions to exercises $1 / \mathrm{a}, \mathrm{b}$, and no solution to exercises $1 / \mathrm{c}$ and 2 . In the second group there were significantly more solutions to exercises $1 / \mathrm{a}, \mathrm{b}, \mathrm{a}$
few almost correct solutions to exercise $1 / \mathrm{c}$ and no solution to exercise 2 . We were surprised because 60% of the first group and 45% of the second group did not understand the exercises at all. Some of the students wanted to scale the pots, others simply wanted to pour half of the water from the pot c to b and some of them wanted to pour out 1 liter measuring only with eyes. We were surprised because this kind of mathematical problems appear in many textbooks and competitions for $10-12$ years old children. From the first group most of the students who understood the mathematical problem were not able to perform out the necessary steps. They gave it up after the $6^{t h}-9^{t h}$ correct steps and after this they started implying false ideas, similar to their colleagues who did not understand the mathematical problem. Probably their working memory became full and they were unable to erase it (this idea seemed to be confirmed by some comments the students made: "my brain has been blocked" or "you must measure it until you get tired"). The same phenomenon appeared in the second group as well, however the number of correct steps made toward the result was significantly higher, and about 23% of the students succeeded in solving $1 / \mathrm{a}, \mathrm{b}$.

None of these students realized that their choices (pouring from pot x to pot y) were random and they didn't try simultaneous alternative ways. Although there were no explanation on the selection of the steps, the comments of some of the students showed that they simply tried to avoid the previous states and at every state they chose the next step randomly ("we just have to fill the pot till the desired quantity appears").

The comparison between the histograms of the number of correct steps the students performed revealed a significant difference between the results of the two groups. The students from the second group were able to carry out much more steps than the students from the first group.

We also observed an interesting correlation: if we consider only those students from the first group who solved exercise $1 / \mathrm{a}$ and we look for a regression between the number of steps used in the first problem and the number of performed steps at problem 2, then we get two well correlated data sequences. This correlation showed that the students performed 20% less steps with the larger pots than with the smaller ones before giving up. Some of the students believed (they described it in their comments) that exercise 2 can not be solved because the pots are too large. This shows that the operational skills of our $13-14$ students regarding addition and substraction are not yet really operational.

5 Concluding remarks

- The use of diagrams in solving routine or non-routine mathematical problems has been widely studied in the literature (see [$[\boxed{]}]$ and the references therein). The representation used by Poisson is a typical hierarchy (branching) structure (see [四]) while the billiard ball representation can be viewed as a dynamical diagram. In our case the key element of the proof is contained in the dynamical structure and it is not present in the hierarchy structure. We believe that such dynamical diagrams can be used with a greater efficiency in teaching/learning activities than the usual static diagrams. It would be interesting to develop a deeper study on the effectiveness of using dynamical representations in problem solving.
- We also wish to point out that the construction of a dynamical diagram eases the understanding of the problem. Although the original problem is a non-routine one (in our case), once the corresponding diagram has been understood, the problem becomes a routine problem.
- Our problem solving activity illustrates that in many classroom activities the miracle just happens, and the solution appears without further or deeper understanding of the phenomenons, moreover our students are familiar with this sudden appearance of a solution. The students are perfectly satisfied if they obtain a solution and they seldom search the reasons behind it. This can be a major obstacle in understanding mathematics and in developing an active and conscious attitude in doing mathematics.
- Our students did not balance their possible choices and what is even worst most of them did not realize that they did have the choice of the next state and that they can experiment the effect of these choices.
- Our computer simulations show that the solution of both problems can be obtained by random steps if we avoid the previous states (and even if we do not avoid cycles, but the number of steps in this case is much more greater), so the failure of our students can not be explained neither by the defective knowledge nor by the absence of their talent or combinatorial skills. They did not have sufficient perseverance to perform as much steps as it was needed. We hope that by understanding the nature of this problem and the source of their failure our students realized what Jim Watson says about persistence: "A river cuts through rock, not because of its power, but because of its persistence."

6 Acknowledgements

Our teaching activity was part of the project DQME II ${ }^{\mathbb{D}}$. We are very grateful to our colleagues Hajnalka Csapó (Márton Áron Highschool, Miercurea Ciuc), Jutka Szilágyi (Báthory István Highschool, Cluj Napoca), Emőke Szilágyi and István Mátéfi(Bolyai Farkas Highschool, Târgu Mureş) for their help in designing the problem solving activities. The first author's research was partially supported by the Hungarian University Federation of Cluj Napoca.

References

[1] Bråting, Kajsa; Pejlare, Johanna: Visualizations in mathematics. Erkenntnis 68 (2008), no. 3, 345-358.
[2] H.S.M. Coxeter, S.L. Greitzer: Geometry Revisited, The Mathematical Association of America, 1967
[3] Giaquinto, M.: Visual thinking in mathematics. An epistemological study, Oxford University Press, Oxford, 2007.
[4] Lyn D. English: Mathematical reasoning: analogies, metaphors, and images. Studies in Mathematical Thinking and Learning, Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 1997

[^1][5] Marilena Pantziara, Athanasios Gagatsis, Iliada Elia: Using diagrams as tools for the solution of non-routine mathematical problems, Educ Stud Math (2009) 72:39-60
[6] Laura R. Novick, Sean M. Hurley: To Matrix, Network, or Hierarchy: That Is the Question, Cognitive Psychology 42, 158-216 (2001)
[7] Ruszev-Ruszeva: Matematikai mozaik, Móra könyvkiadó, 1982, Budapest (in hungarian)
[8] Zoltán Tuzson: Töltogetéses feladatokról, Abacus Matematikai Lapok 10-14 éveseknek, 3(1997):6-8 (in hungarian)
[9] Zoltán Tuzson: Hogyan oldjunk meg aritmetikai feladatokat?, Ábel kiadó, Cluj Napoca, 2005 (in hungarian)

[^0]: ${ }^{1} 1 \mathrm{pt}$ (pint) is equivalent to 568.26125 ml

[^1]: ${ }^{2}$ Developing Quality in Mathematics Education, for more details see http://www.dqime.uni-dortmund.de/

